AWS Amplify

Tommy + the technology of AWS Amplify

Home Capabilities Technologies AWS Amplify

AWS Amplify Examples

Below are some of my projects involving AWS Amplify, grouped by company. Click to read more about the relevant projects and chat with me to follow up on any topic you'd like to hear more about!
Intertru.ai logo

Intertru.ai

AI-assisted Hiring

Lead Engineer

2023 - 2024

Project: Interview Builder

Interview Builder is where customers would go to define the values they wanted to find in their ideal candidate, and map those to attributes and ultimately interview questions that the intertru ai was pre-trained to assess.

My role was to work closely with the CTO to understand what was proven out on the ML side, so that we could deduce a UI that intuitively would extract the necessary inputs from the customer, while providing them with predefined templates as starting points to ease them into the process.

The application was built on react, typescript, graphql (backed by dynamodb) and amazon amplify, and I built it very quickly with simple backends so that we could iterate on the frontend, to get the experience right before investing significant time and effort into an ideal backend. This approach made iterations faster and produced less collateral damage / throwaway code as we refined the user experience.

We then added instrumentation so that we could measure the use of the feature, any bugs that might turn up, and its performance, before releasing it to production, where it was initially used internally to surface any shortcomings before customers were exposed to it.

Read more...
Project: Candidate Summary

The candidate summary page summarized a candidate's performance during multiple interview stages by presenting radar charts showing degree of fit against the values and attributes being evaluated for their position, as defined in the Interview Builder.

I built the frontend in React and Typescript, and integrated with the backend, which I partially built, which leveraged RAG and ran several Machine Learning models to produce scores and explainable AI. For example, models to break down interview transcripts into quotable fragments, evaluate relevance against configured company values, and call chatGPT APIs to obtain summaries and scores related to that content

Read more...

Key Results

  • Delivered MVP in 6 weeks enabling rapid iteration on customer interview workflows
  • Built AI-powered candidate evaluation dashboard enabling data-driven hiring decisions
  • Reduced time-to-create interview templates by 70% with intuitive UI design

Full Details

Tommy Sullivan - AI + Full Stack Software Builder + Leader