AWS Model Registry
Tommy + the technology of AWS Model Registry
Home Capabilities Technologies AWS Model Registry
AWS Model Registry Examples

pull.systems
EV Observability + Analytics2023 - 2024
Upon joining, I came up to speed quickly on the stack of the early version of Pull Workbench, which was very buggy but demonstrated the initial ideas and had a solid set of the latest technologies and patterns established in the codebase, providing for a solid starting point.
I was entrusted to aid our CTO in hiring several additional employees, and so I joined and conducted interviews for the first several months while working with the existing team AI + Full Stack to deliver features and solidify the system, with the aim of keeping it fully working with each merge, after playing a little catch-up to fix the early bugs that worried our business partners, giving them confidence that our team could deliver.
From there, I developed full stack features solo or by pairing with team members, and ultimately led a squad of 5 team members alongside a second squad that together comprised our engineering team.
Much of my time went into authoring complex analytics sql queries using the impressive Kysely library, a fluent, typesafe query builder that we used for our postgres and redshift databases. Given the nature of the product, we needed to make decisions on which queries could be run in real time vs. which queries and subqueries would need to be computed offline as part of a network of airflow dags.
On the ML Ops side I advocated for traceability and reproducibility / determinism of all models and artifacts, and integrated with systems that implemented that, such as Airflow to coordinate DAGs of ML training jobs and Sagemaker's metadata API, which we controlled via model lifecycle automations that produced and stored models, artifacts and metadata that were in turn consumed at runtime or in batch by our analytics stack
On the frontend, I helped us deliver an initial version of the Pattern Editor, a UI and set of APIs that users could use to put together their own patterns of interest, such as looking for certain anomalous ranges of quantities that themselves may be derived from other user-defined patterns. This entailed not only a UI that was DAG-aware but also a layer that converted the json representation of these patterns from the frontend into typesafe kyesely queries to be executed against redshift.
Key Results
- Led 5-person squad delivering Pattern Editor enabling custom anomaly detection workflows
- Processed 10M+ daily records with type-safe SQL queries using Kysely
- Improved hiring velocity conducting 30+ technical interviews while building product

Intertru.ai
AI-assisted Hiring2023 - 2024
The candidate summary page summarized a candidate's performance during multiple interview stages by presenting radar charts showing degree of fit against the values and attributes being evaluated for their position, as defined in the Interview Builder.
I built the frontend in React and Typescript, and integrated with the backend, which I partially built, which leveraged RAG and ran several Machine Learning models to produce scores and explainable AI. For example, models to break down interview transcripts into quotable fragments, evaluate relevance against configured company values, and call chatGPT APIs to obtain summaries and scores related to that content
Key Results
- Built AI-powered candidate evaluation dashboard enabling data-driven hiring decisions
- Integrated 3 ML models to support explainable AI
- Performed Quick prototyping with product and design to get product-market-fit cheaply