ECS

Tommy + the technology of ECS

Home Capabilities Technologies ECS

ECS Examples

Below are some of my projects involving ECS, grouped by company. Click to read more about the relevant projects and chat with me to follow up on any topic you'd like to hear more about!
Intertru.ai logo

Intertru.ai

AI-assisted Hiring

Lead Engineer

2023 - 2024

Project: Interview Builder

Interview Builder is where customers would go to define the values they wanted to find in their ideal candidate, and map those to attributes and ultimately interview questions that the intertru ai was pre-trained to assess.

My role was to work closely with the CTO to understand what was proven out on the ML side, so that we could deduce a UI that intuitively would extract the necessary inputs from the customer, while providing them with predefined templates as starting points to ease them into the process.

The application was built on react, typescript, graphql (backed by dynamodb) and amazon amplify, and I built it very quickly with simple backends so that we could iterate on the frontend, to get the experience right before investing significant time and effort into an ideal backend. This approach made iterations faster and produced less collateral damage / throwaway code as we refined the user experience.

We then added instrumentation so that we could measure the use of the feature, any bugs that might turn up, and its performance, before releasing it to production, where it was initially used internally to surface any shortcomings before customers were exposed to it.

Read more...
Project: Candidate Summary

The candidate summary page summarized a candidate's performance during multiple interview stages by presenting radar charts showing degree of fit against the values and attributes being evaluated for their position, as defined in the Interview Builder.

I built the frontend in React and Typescript, and integrated with the backend, which I partially built, which leveraged RAG and ran several Machine Learning models to produce scores and explainable AI. For example, models to break down interview transcripts into quotable fragments, evaluate relevance against configured company values, and call chatGPT APIs to obtain summaries and scores related to that content

Read more...

Key Results

  • Delivered MVP in 6 weeks enabling rapid iteration on customer interview workflows
  • Built AI-powered candidate evaluation dashboard enabling data-driven hiring decisions
  • Reduced time-to-create interview templates by 70% with intuitive UI design

Full Details

Appen AI logo

Appen AI

Formerly Figure Eight
Project: DevOps as a Practice

Instead of splitting devops and infrastructure and tests completely separate from development teams, I moved the needle so that product development teams could own more of their own infrastructure and tests, creating less back-and-forth and empowering teams to deliver.

We used Devspace, which meant any dev or team could stand up a reproducible, isolated stack with multiple services and frontends running, in the cloud, as well as modify the definitions of the infrastructure and code themselves, directly, without permission or external team tickets.

This enabled product engineers to do more experimentation and testing thru declarative infrastructure and configuration management while still protecting our production environments, unlocking their shackles and potential as the experts in the software.

At the same time I worked to reduce the outsized role our amazing DevOps team was playing in the day to day management as well as enhancement of environments, which unfairly impeded expert developers by introducing red tape and inter-team processes that didn't add value.

Read more...
Project: ML Platform Enhancements

I ran Appen's ML Platform, which was used by FAANG and many other startups and enterprises to automate and scale their ML practices, including running both supervised and unsupervised workloads, as well as their global annotation workforce which enabled customers to leverage our crowdsourced professionals to elastically obtain labelling and quality checking services for text, voice, image, video and LIDAR annotation, training and validation use cases.

I reported to the CTO and directed multiple full stack teams each with their own tech leads and range of engineering skills to do both regular maintenance and product enhancements using technologies like Sagemaker, React, K8s (Kubernetes), Spark, Kafka, Airflow, Spring(Boot), Ruby, Python, Java, Typescript and SQL.

Maintenance included regular updates to infrastructure, bug fixes, and performance optimizations across the platform. We migrated more and more services to K8s (Kubernetes) and Ambassador as our API gateway, where we could consolidate cross-cutting logic like auth and versioning.

Enhancements included changes to simplify the UX, kill redundant or unused features, add measurement to inform our choices, and larger efforts like Enterprise OAuth.

Read more...
Project: Enterprise OAuth

There were 4 different websites in different technologies, acquired from different companies, and some APIs, that all needed to be unified in terms of sign up, sign in, and sign out, given their existing state of each having separate user stores, including 3rd party vendor users who logged in with vendors and then authed to us with a hidden token.

It was a stalled project, so I started with missing requirements, incomplete designs and misleading progress indicators and focused other leaders and teams on delivery thru tested working software, focusing on tested user stories and on-the-ground learnings as units of progress, instead of large, outdated PRDs waterfall style.

Contributed directly in React / Typescript, Nodejs / express, Ruby on Rails and custom gems, OAuth configuration, Java Spring with runtime loaded SPI implementations from across separate applications domains.

There was a complex architecture at play and teams that did not know each other and weren't working as a single unit, so the landscape was difficult and rife with demoralized team members.

Although my team was to play but one part in many on the project, I realized quickly that there was no single leader or coherent plan, and so there was lots of blame game and treading water.

With permission from our VP of Engineering, I took charge of the teams and worked with product to firm up requirements, and replace the initially conceived solution architecture, which would not have worked and was created in a bit of a vacuum, into one that would actually work, by digging in and running all the services and web apps myself and understanding the multiple data stores and existing auth mechanisms including auth via 3rd party vendors to some parts of the system.

I delivered the project within 5 months and for my efforts was rewarded not long after with a promotion.

Read more...

Key Results

  • Reduced deployment lead time by 75% enabling product teams to self-serve infrastructure
  • Ran ML platform to support 100K+ annotation jobs daily across FAANG clients
  • Unified authentication across 4 legacy systems reducing login friction by 85%

Full Details

MapR Technologies logo

MapR Technologies

Big Data / Hadoop Distributor
Project: DevOps Portal + CICD

A portal bringing together version control, automated test definitions and statuses, quality metrics, jira tickets, CICD jobs, and supportinginfrastructure definitions and status into a single place to aid in release management and devops practices.

Behind the scenes, pipelines made with K8s (Kubernetes), Mesos, Github and Jenkins automatically provisioned environments, deployed our software and ran extensive tests on it, including complex multi-cloud platform scale tests across Google Cloud and AWS as well as on prem with bare metal and Open Stack

Read more...

Key Results

  • Unified 5 disparate DevOps tools into single portal reducing context switching by 80%
  • Automated multi-cloud testing across GCP, AWS, and on-prem reducing test setup time by 80%

Full Details

Tommy Sullivan - AI + Full Stack Software Builder + Leader